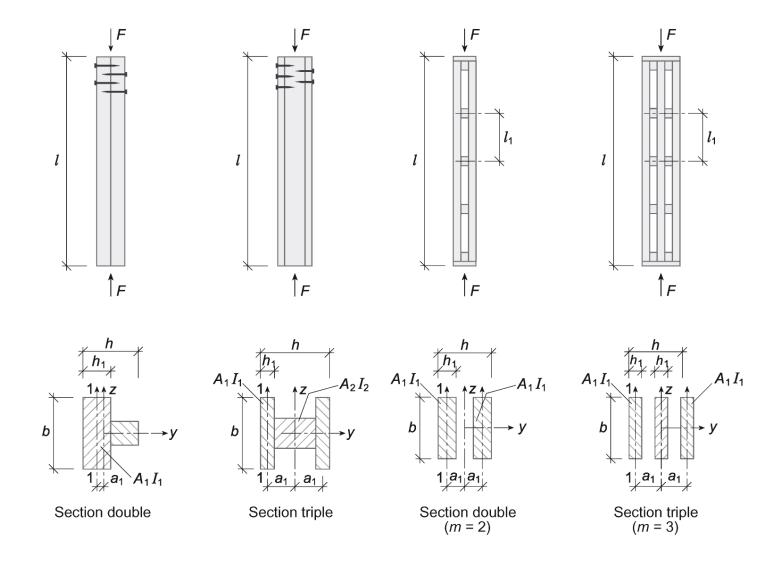
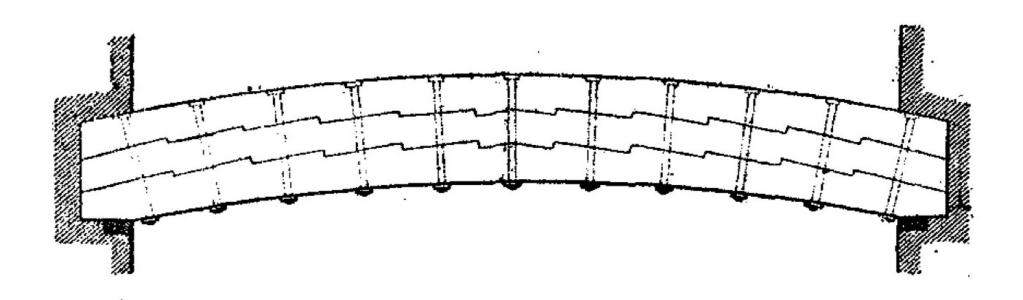
Construction en bois Bachelor

Les sections composées

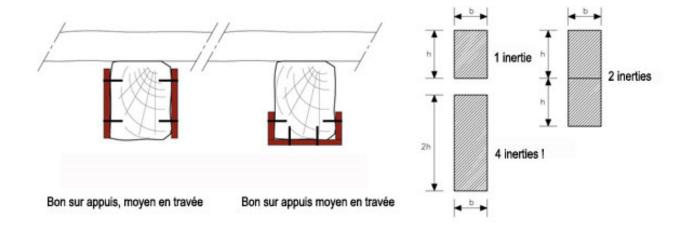

EPFL - SGC

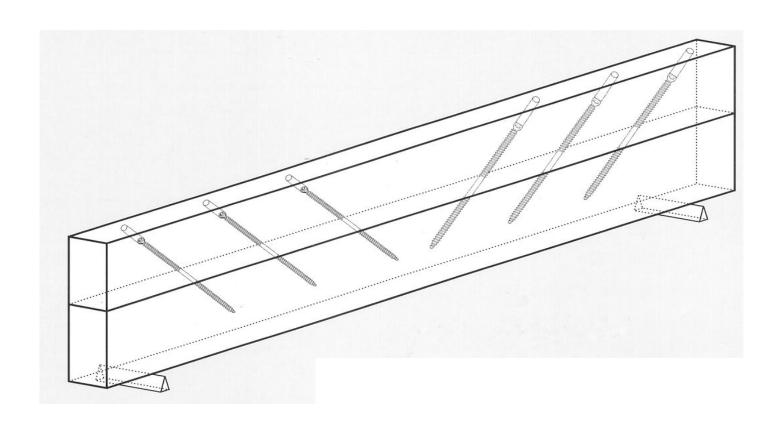
Sections composées


Type de sections

- Poteaux en compression
- Traverse
- Coques nervurée multi-couches
- Bois béton
- Dalle bois multi-collé

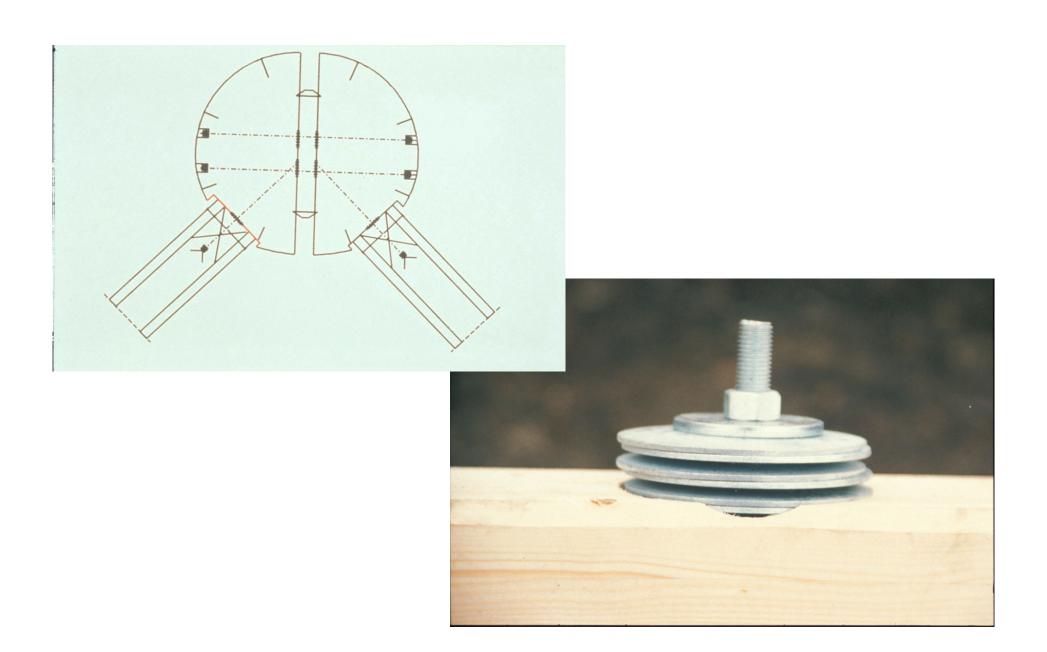
Poteau en compression


Poutre en flexion

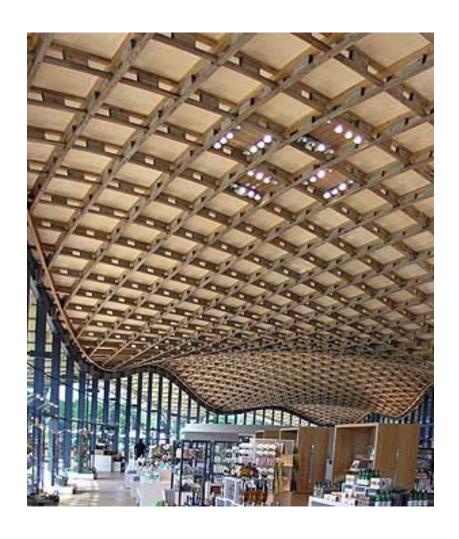

Poutre en flexion

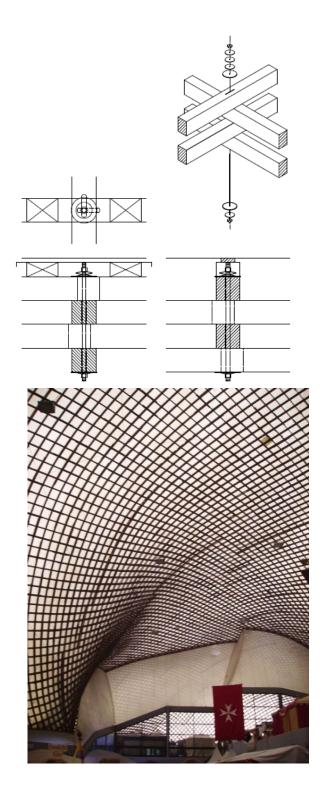
Poutre en flexion

Exemple construit


Toiture de Hannovre

Toiture de Hannovre



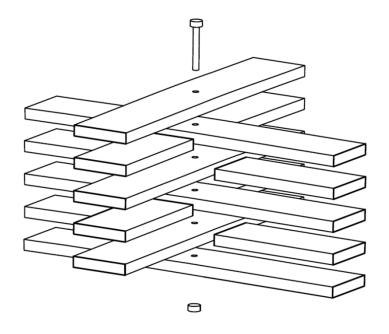


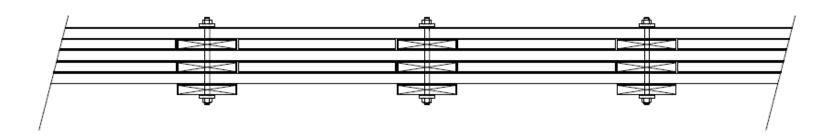
Restaurant de l'hôtel Palafitte

Coques nervurées

Coques nervurées

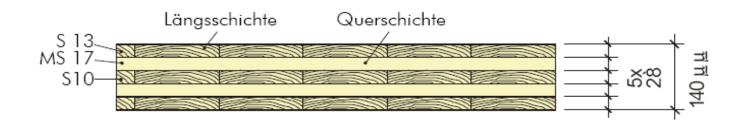
Le polydôme





Coques nervurées

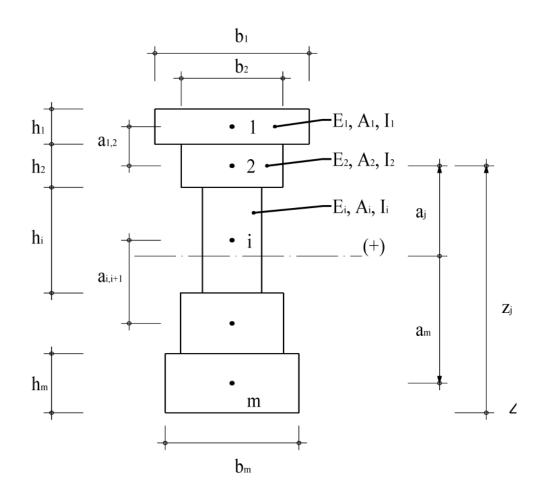
Le polydôme


Bois béton

Panneaux bois contrecollé

Theories

Méthode simplifiée SIA 265 2012


• Méthode - γ 1955 & 1968

Méthode des poutre à treillis
 1990

Méthode de l'Analogie à l'effort tranchant 1999

Les théories de la section composée

Rigide - formule de Steiner

$$I_{eq} = \sum_{i=1}^{m} I_i + \sum_{i=1}^{m} A_i \, a_i^2$$

Rigidité propre

Rigidité de translation

Rigide - Formule de Steiner

Centre de masse

$$z_{S} = \frac{\sum_{i=1}^{m} A_{i} z_{i}}{\sum_{i=1}^{m} A_{i}}$$

z_i altitude de chaque section

A_i surface de chaque section

Rigide – Contrainte de cisaillement

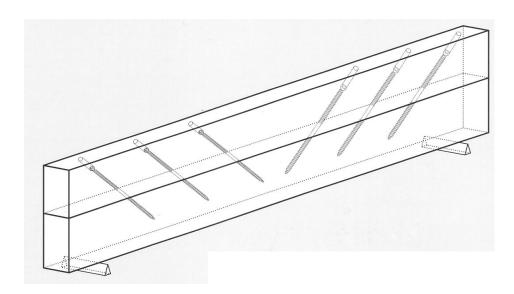
Cisaillement

$$\tau_{i,i+1} = \frac{Q \, S_{i,i+1}}{I_{eq} \, b_{i,i+1}}$$

Le moment statique

$$S_{i,i+1} = \sum_{j=1}^{i} A_i \ a_j$$

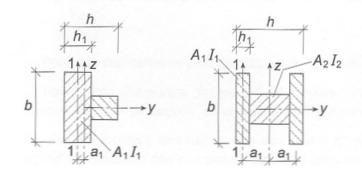
a, bras de levier de la section


A_i surface de chaque section

Section semi-rigide

Méthode simplifiée SIA 265

Dimensionnement facilité selon SIA 265


- La SIA 265 propose un dimensionnement facilité, a prendre avec toutes les précautions nécessaire
 - 2 couches
 - 3 couches
 - élancement limite $\lambda_{z,id}$ < 170 pour les pièces en compression
 - Ne pas oublier de faire la vérification des connecteurs

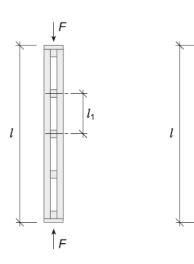
Eléments en compression

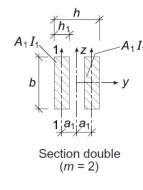
barres avec liaison continue

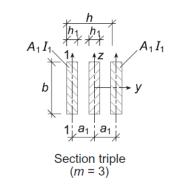
$$\lambda_{z,id} = \sqrt{\frac{{\lambda_z}^2}{\eta}}$$
 avec $\eta = \frac{I_{z,ef}}{I_z}$

où: η degré d'efficacité de la liaison

 I_{z} moment d'inertie, la liaison étant admise rigide


 λ_7 élancement de la section totale, la liaison étant admise rigide


 $I_{\mathrm{z,ef}}$ moment d'inertie effectif, compte tenu de la souplesse moyenne des assemblages.


Elément en compression

barres comprimées diaphragmées

$$\lambda_{z,id} = \sqrt{\frac{{\lambda_z}^2}{\eta} + \frac{m}{2} {\lambda_1}^2}$$

- où: η degré d'efficacité de la liaison, en admettant une distribution continue des connecteurs sur la longueur de la barre l
 - m nombre d'éléments
 - λ_z élancement de la section totale, la liaison étant admise rigide
 - λ_1 élancement d'un des éléments l_1/l_1 , avec la condition $l_1 \le l/3$
 - i_1 rayon de giration de la section d'un des éléments par rapport à l'axe 1–1.

Elément en compression

Effort de cisaillement pour les connecteurs (§ 5.3.7.5)

$$V_d = \frac{\lambda_{z,id}}{2000} F_d$$

où: F_d valeur de calcul de l'effort de compression $\lambda_{z,id}$ élancement fictif de la section totale selon les chiffres 5.3.7.3 ou 5.3.7.4.

Propriétés mécaniques d'une poutre chevillée

- Restrictions :
 - calcul approché
 - chaque couche possède les mêmes propriétés
 - trois couches maximales
- Coefficients de réduction (§ 5.3.3.1)

Composition de la section	Moment de résistance	Moment d'inertie
2 profils superposés	β = 0.85	η = 0.65
3 profils superposés	β = 0.60	η = 0.33

Propriétés mécaniques d'une poutre chevillée

Exemple : poutres chevillées

Longueur: 5.0 m

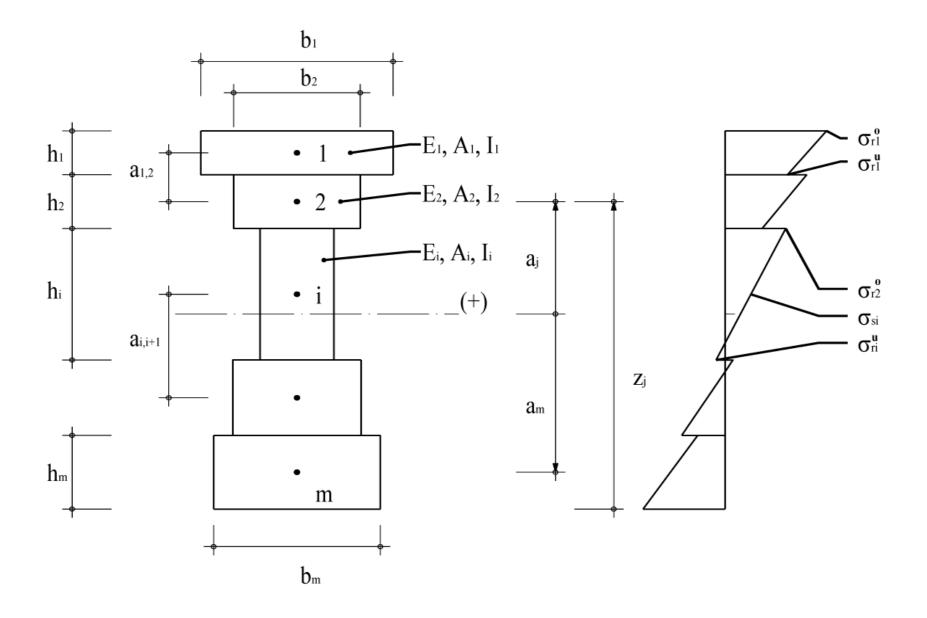
Sections: 3 x 160/80 mm

$$\lambda_z = I_{\text{eff}} / i$$

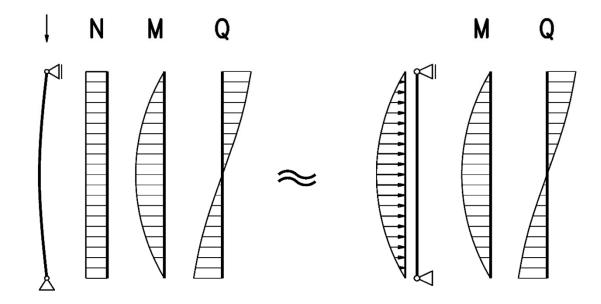
$$I = (160 \cdot 240^3) / 12 = 184.3 \cdot 10^6 \text{ mm}^4$$

 $W = I / (h/2) = 184.3 \cdot 10^6 / (240/2) = 1.54 \cdot 10^6 \text{ mm}^3$

$$I_{eff} = \eta \cdot I = 0.33 \cdot 184.3 \cdot 10^6 = 60.8 \cdot 10^6 \text{ mm}^4$$


 $W_{eff} = \beta \cdot W = 0.6 \cdot 1.54 \cdot 10^6 = 0.924 \cdot 10^6 \text{ mm}^3$

→ pour la déformation

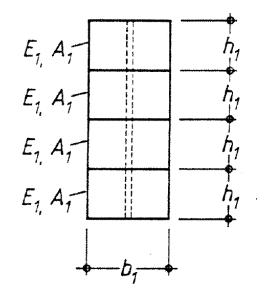

→ pour le moment résistant

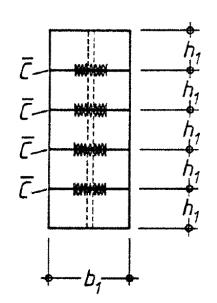
Méthode γ

Méthode - γ

Méthode - γ

$$I_{eq} = \sum_{\substack{i=1\\rigidit\'e\ propre}}^{m} I_{i} + \sum_{\substack{i=1\\rigidit\'e\ de\ translation}}^{m} \gamma_{i} \cdot \bar{A}_{i} \cdot a_{i}^{2}$$


Méthode – γ


Exemple du 4-couches

$$K = 1 + \frac{\pi^2 \cdot E \cdot A_1}{1^2 \cdot 2 \cdot \overline{C}}$$

$$\gamma_2 = \gamma_3 = \frac{1}{2 \cdot K^2 - 1}$$

$$\gamma_1 = \gamma_4 = (2K + 1) \cdot \gamma_2 / 3$$

C : rigidité de la connexion exprimée en (N/mm)

C = C/e : rigidité de la connexion exprimée en (N/mm²)

e : distance entre les connecteurs (mm)

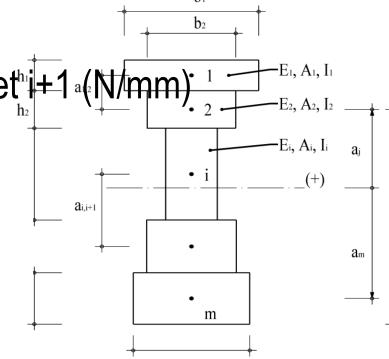
Méthode - γ Les contraintes

Contrainte à l'axe de la section i

$$\sigma_{si} = \frac{M}{I_{eq}} \cdot \gamma_i \cdot \alpha_i$$

Contrainte de bord

$$\sigma_{ri} = \frac{M}{I_{eq}} \cdot \left(\gamma_i \cdot a_i \pm \frac{h_i}{2} \right)$$


Méthode - γ Les contraintes

Le flux de cisaillement entre la couche i et +1 4 (N/mm): 1

$$t_{i,i+1} = \frac{Q}{I_{eq}} \cdot S_{i,i+1}$$

Avec

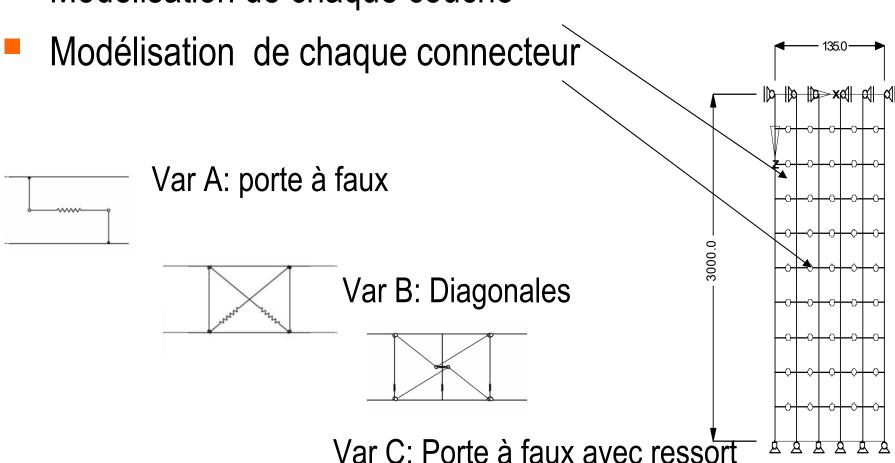
$$S_{i,i+1} = \sum_{j=1}^{i} \gamma_j \cdot \bar{A}_j \cdot a_j$$

 b_{m}

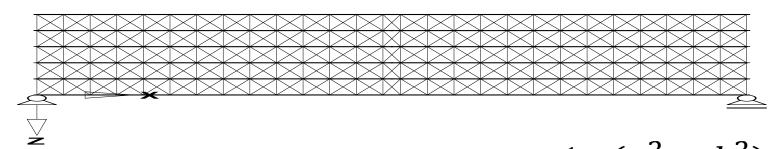
Méthode - γ

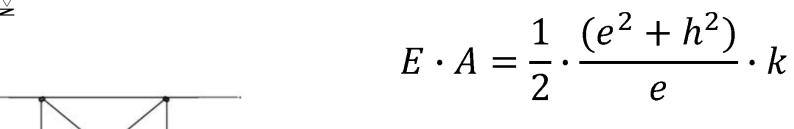
Exemple du 6 - couches

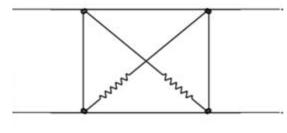
$$I_{ef} = \sum_{i}^{m} I_{i} + \sum_{i}^{m} \gamma_{i} A_{i} \alpha_{i}^{2}$$


$$\gamma_1 = \gamma_6 = \frac{2 + 3 \cdot \gamma_2}{(2 \cdot K - 1) \cdot 5}$$

$$\gamma_3 = \gamma_4 = \frac{1}{K \cdot (4 \cdot K^2 - 1)}$$


$$K = 1 + \frac{\pi^2 \cdot E \cdot A}{l^2 \cdot 2 \cdot \overline{C}}$$

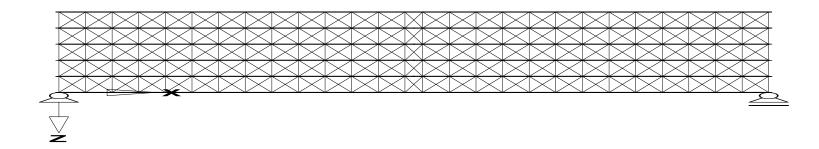


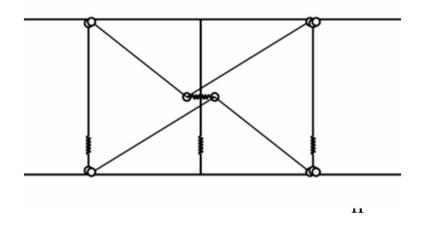

Modélisation de chaque couche

Variant B: deux diagonales

Avec:

h

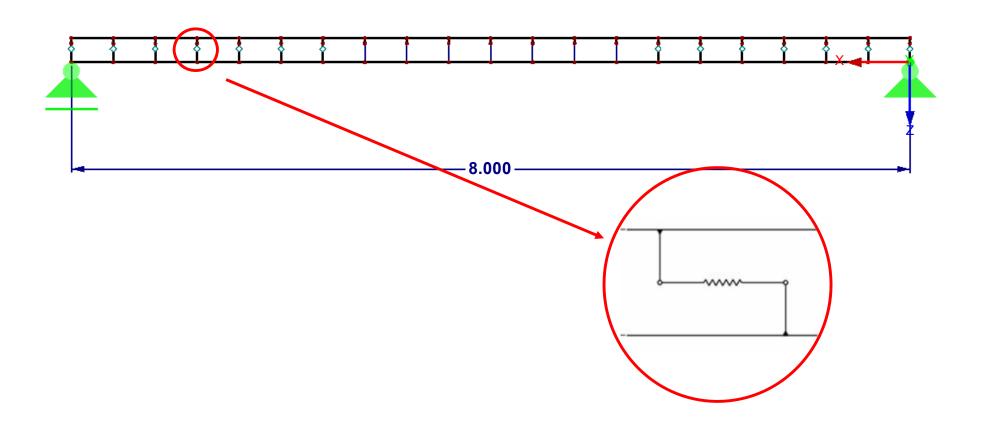

 $E \cdot A$ Rigidité de la diagonale [N]

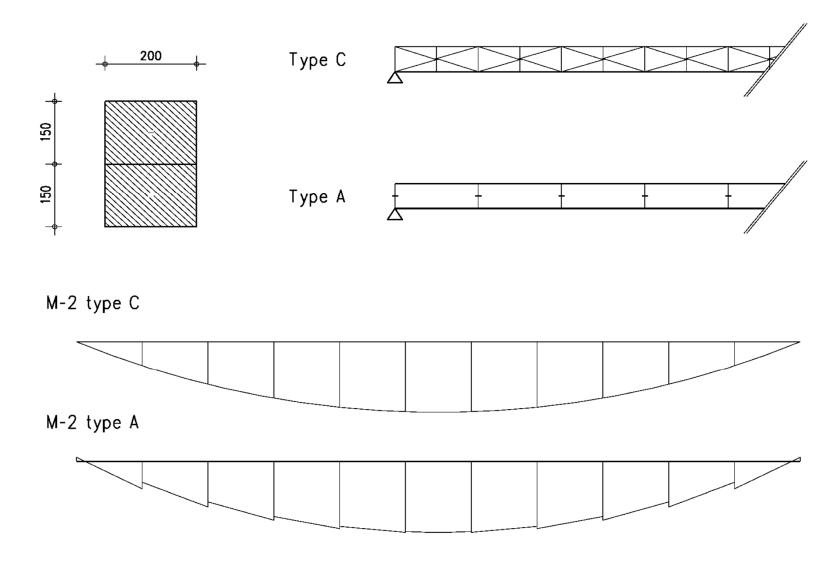

e distance entre les connecteurs [mm]

distance entre les axes des couches [mm]

k rigidité de l'assemblage [N/mm]

Variant C: porte à faux avec ressort



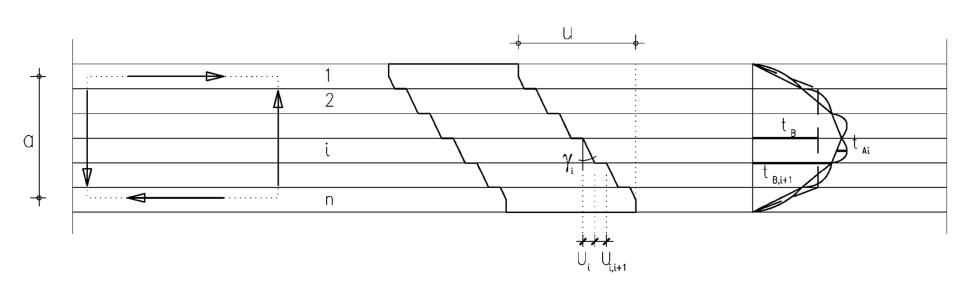

k

Rigidité de la diagonale [N]
distance entre les connecteurs [mm]
distance entre les axes des couches [mm]
rigidité de l'assemblage [N/mm]

Variant A: porte à faux avec ressort

Var A vs Var B: porte à faux avec ressort

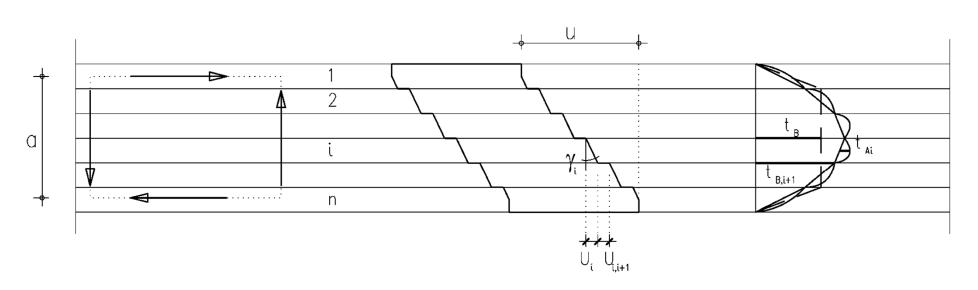
Analogie à l'effort tranchant


Partie A Inertie propre

Partie B Inertie de translation

- Hypothèse de base
 - 1. Dans un premier temps, la contrainte de cisaillement est admise constante à travers toutes les couches de la section, exceptée dans les deux couches extérieures
 - 2. Suite au calcul de la déformation totale, la contrainte de cisaillement est, corrigée par une approximation parabolique

Méthode de l'analogie à l'effort



déformation

contrainte de cisaillement

$$\gamma = \frac{\mathbf{u}}{a} = \frac{1}{a} \cdot \left[\sum u_{i,i+1} + \sum u_i \right] = \frac{1}{a} \cdot \left\{ \sum_{1}^{n-1} \frac{t}{C_i} + \frac{1}{2} \cdot \frac{t \cdot d_1}{G_1 \cdot b_1} + \sum_{i=2}^{n-1} \frac{t \cdot d_i}{G_i} + \frac{1}{2} \cdot \frac{d_n}{G_n \cdot b_n} \right\}$$

Méthode de l'analogie à l'effort

déformation

contrainte de cisaillement

$$u = \frac{t \cdot a^2}{S} = \left\{ \sum_{1}^{n-1} \frac{1}{C_i} + \frac{d_1}{2 \cdot G_1 \cdot b_1} + \sum_{i=2}^{n-1} \frac{d_i}{G_i} + \frac{d_n}{2 \cdot G_n \cdot b_1} \right\}$$

$$\frac{1}{S} = \frac{1}{a^2} \cdot \left\{ \sum_{1}^{n-1} \frac{1}{C_i} + \frac{d_1}{2 \cdot G_1 \cdot b_1} + \sum_{i=2}^{n-1} \frac{d_i}{G_i \cdot b_i} + \frac{d_n}{2 \cdot G_n \cdot b_n} \right\}$$

Avec

$$\gamma = \frac{\tau}{G} = \frac{1}{G} \cdot \frac{Q}{A_3} = \frac{t \cdot a}{S}$$

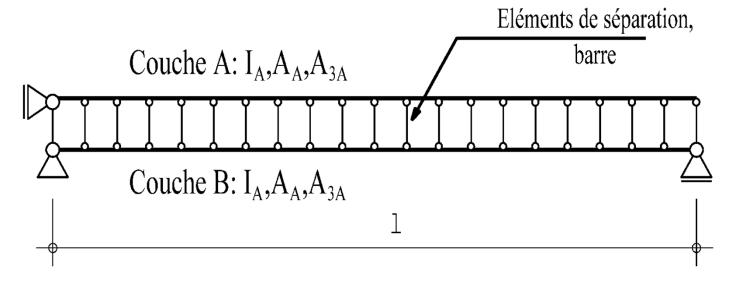
Nous avons

$$\frac{1}{S} = \frac{1}{a^2} \cdot \left\{ \sum_{i=1}^{n-1} \frac{1}{C_i} + \frac{d_1}{2 \cdot G_1 \cdot b_1} + \sum_{i=2}^{n-1} \frac{d_i}{G_i \cdot b_i} + \frac{d_n}{2 \cdot G_n \cdot b_n} \right\}$$

Avec

n

nombre de couches

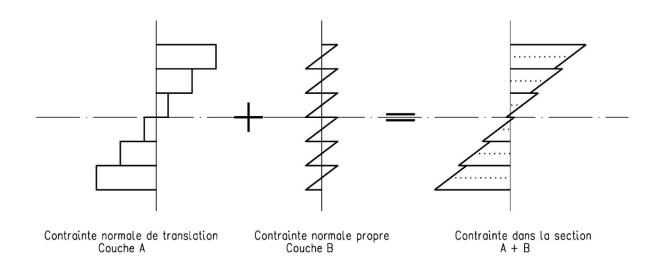

C_i rigidité de l'assemblage entre la couche i et i+1

d_i épaisseur de la couche i

Gi module de glissement de la couche i

 b_i largeur de la couche i

S rigidité équivalente de la section à l'effort tranchant = A_3 G


D'où, les propriétés mécaniques de la couche A

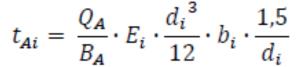
$$B_A = E_a \cdot I_a = \sum E_i \cdot \frac{d_i^3}{12} \cdot b_i \qquad ; \qquad S = \infty$$

Les propriétés mécaniques de la couche B

$$B_B = E_b \cdot I_b = \sum E_i \cdot d_i \cdot b_i \cdot z_i^2$$
; $S = selon Eq. 2.23$

Les contraintes normales

$$\sigma_{Axi} = \frac{M_A}{B_A} \cdot E_i \cdot \frac{d_i}{2}$$

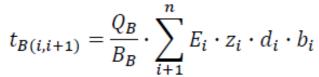

$$\sigma_{Bxi} = \frac{M_B}{B_B} \cdot E_i \cdot z_i$$

Avec:

 M_A moment de flexion dans la couche A moment de flexion dans la couche B

Le flux de cisaillement

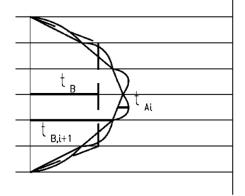
$$t_B = \frac{Q_B}{a}$$



Avec:

flux de cisaillement [N/mm] t_{Ai}

effort tranchant dans la couche A [N] Q_A


$$t_{B(i,i+1)} = \frac{Q_B}{B_B} \cdot \sum_{i+1}^n E_i \cdot z_i \cdot d_i \cdot b$$

Avec:

flux de cisaillement entre la couche i et i+1 [N/mm] $t_{B(i,i+1)}$

effort tranchant de la couche B [N] Q_B

Comparaison

$$b = 140 \ mm$$
 $h = 27 \ mm$ $e_{eff} = 150 \ mm$ $l = 4.0 \ m$ (2.40)

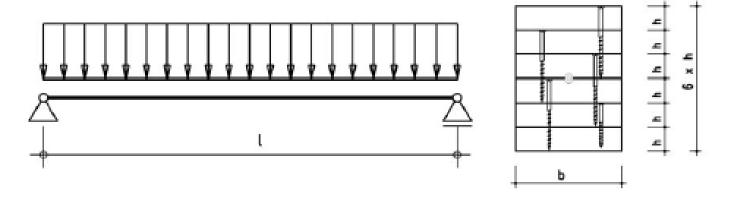


Figure 2.12: Poutre sur deux appuis

Les propriétés du bois massif C24 sont les suivantes:

$$E = 11'000 N/mm^2$$

 $G = 550 N/mm^2$ (2.41)
 $\rho = 350 kg/m^3$

Comparaison

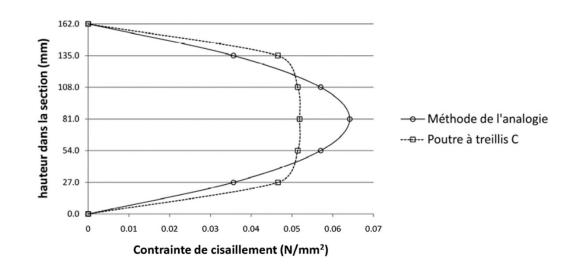
Déformation (mm)

Méthode-γ	Analogie	Poutre à treillis			Krawczyk
		Type A	Type B	Type C	9.700
96.3	95.4	93.1	96.9	96.0	95.1

Max	Min	Diff
96.9	93.1	4.1%

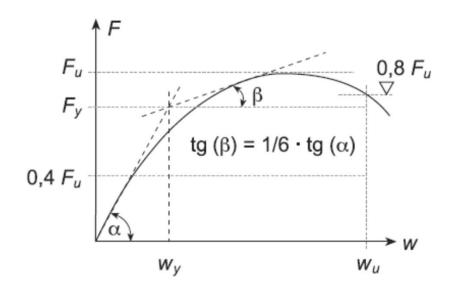
Contrainte de flexion (N/mm²)

Méthode-γ	Analogie	Poutre à treillis			Krawczyk
		Type A	Туре В	Type C	
10.6	9.6	10.4	10.5	10.4	10.2


Max	Min	Diff
10.6	9.6	11.4%

Comparaison

Sollicitation maximale des vis (N)


Méthode-γ	Analogie	Poutre à treillis			Krawczyk
		Type A	Type B	Type C	, in the second
1'309	1'348	1'020	1'079	1'090	1'077

Max	Min	Diff
1347.5	1020.0	32.1%

Comportement de l'assemblage (§ 6.1.2)

Figure 26: Définition de la rigidité et de la ductilité

Indice de ductilité
$$D_s = \frac{W_u}{W_y}$$
 (83)

Module de glissement
$$K_{ser} = \frac{F_y}{W_y}$$
 (84)

- Vérification de la sécurité structurale: K,
- Vérification de l'aptitude au service: K_{sei}

$$K_u = \frac{2}{3} K_{ser}$$

- Pour les broches
- Kser (§ 6.2.1.4)

Tableau 21: Module de glissement K_{ser} par broche et par section cisaillée, classe d'humidité 1

Angle effort - fibres	Bois - Bois	Acier - Bois
II aux fibres K _{ser,0}	$3 \rho_k^{0,5} d^{1,7}$	6 $\rho_k^{0,5} d^{1,7}$
⊥ aux fibres K _{ser,90}	1,5 $\rho_k^{0,5} d^{1,7}$	$3 \rho_k^{0,5} d^{1,7}$

- Pour les clous non-prépercé
- Kser (§ 6.4.2.1.5)

Tableau 25: Module de glissement K_{ser} par clou et par section cisaillée, assemblage sans préperçage, classe d'humidité 1 (cf. chiffre 3.2.1.2)

Angle effort / fibres	Bois - bois	Acier - bois – Assemblage avec des clous striés ou torsadés
Il aux fibres K _{ser,0}	60 d ^{1,7}	120 d ^{1,7}
⊥ aux fibres K _{ser,90}	30 d ^{1,7}	60 d ^{1,7}

Excursion

Date a définir

Rendez-vous au chemin du barrage

en face de	l'arrêt du TSOL	12h00

- Départ pour Orges 12h05
- Arrivée à Orges 12h35
- Visite sur place
- Départ de Orges 14h00
- Retour à l'EPFL 14h30
- Visite de la scierie Zahnd ???

Bus en face du TSOL

JPF-Ducret à Orges -> Ferwood SA

